Development of a Predictive Tool for the Parametric Analysis of a Turbofan Engine

Author:

Ahmed Zara1,Sohail Muhammad Umer1ORCID,Javed Asma2,Swati Raees Fida1ORCID

Affiliation:

1. Department of Aeronautics & Astronautics, Institute of Space Technology, Islamabad 44000, Pakistan

2. Department of Computing Studies-Data Analytics, University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

Parametric cycle analysis, an on-design engine study, specifies the required design characteristics that optimize engine performance. This study aimed to conduct a parametric analysis of a low-bypass turbofan engine with an afterburner, F100-PW229, and develop a technique for estimating its performance based on data using machine learning and deep learning. Commercially available gas turbine simulation software, GasTurb 14, was used to create a dataset of engine performance response variables and input design parameters. The effects of the Mach number, fan pressure ratio, altitude, turbine entry temperature, and bypass ratio on the specific thrust, propulsive efficiency, specific fuel consumption, and total fuel flow were investigated. Regression learning models and deep neural networks were then programmed on this dataset to predict responses for new input data. In MATLAB, a total of 24 regression models were trained with cross-validation, and the model with the least root mean square error was selected as the final model. The machine learning regression models produced reliable output parameter predictions, with the least root mean square error of 9.076 × 10−5. Among the numerous regression models tested, Gaussian process regression, the quadratic support vector machine, and the wide neural network emerged to be the most successful in predicting turbofan engine performance metrics. A multilayer perceptron model was coded in Python with two hidden layers that accurately predicted the performance parameters. The mean square error value on test data was found to be as low as 0.0046. In comparison to intensive computational simulations, machine learning and deep learning models offer an efficient method for conducting parametric analysis of turbofan engines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3