Variation Trend Prediction of Dam Displacement in the Short-Term Using a Hybrid Model Based on Clustering Methods

Author:

Lin Chuan1ORCID,Zou Yun1,Lai Xiaohe1,Wang Xiangyu1,Su Yan1

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

Abstract

The deformation behavior of a dam can comprehensively reflect its structural state. By comparing the actual response with model predictions, dam deformation prediction models can detect anomalies for effective advance warning. Most existing dam deformation prediction models are implemented within a single-step prediction framework; the single-time-step output of these models cannot represent the variation trend in the dam deformation, which may contain important information on dam evolution during the prediction period. Compared with the single value prediction, predicting the tendency of dam deformation in the short term can better interpret the dam’s structural health status. Aiming to capture the short-term variation trends of dam deformation, a multi-step displacement prediction model of concrete dams is proposed by combining the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the k-harmonic means (KHM) algorithm, and the error minimized extreme learning machine (EM-ELM) algorithm. The model can be divided into three stages: (1) The CEEMDAN algorithm is adopted to decompose dam displacement series into different signals according to their timing characteristics. Moreover, the sample entropy (SE) method is used to remove the noise contained in the decomposed signals. (2) The KHM clustering algorithm is employed to cluster the denoised data with similar characteristics. Furthermore, the sparrow search algorithm (SSA) is utilized to optimize the KHM algorithm to avoid the local optimal problem. (3) A multi-step prediction model to capture the short-term variation of dam displacement is established based on the clustered data. Engineering examples show that the model has good prediction performance and strong robustness, demonstrating the feasibility of applying the proposed model to the multi-step forecasting of dam displacement.

Funder

the Major Project of Chinese Ministry of Water Resources

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3