Simulations of Deformation Failure Process and Refinement of Reinforcement Scheme in the Dabenliu Quarry Slope Using Discontinuous Deformation Analysis

Author:

Hou Wei-Hua1,Xiong Feng2ORCID,Zhang Qi-Hua1

Affiliation:

1. Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan 430074, China

2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

For this study, the geological engineering features and possible failure modes of the Dabenliu quarry slope in the Jinping-I Hydropower Station were qualitatively analyzed before a method for setting viscous boundary and an algorithm for modeling pre-stressed cables were embedded into a DDA (Discontinuous Deformation Analysis) computer code to analyze the deformation of the slope under seismic loading. Our simulation results revealed that the middle and upper parts of the slope slipped along the bedding joints (interlayer shear zones) and that the lower part buckled and collapsed after the slope was excavated. This is a typical slipping–buckling failure mode characterized by upper-slipping followed by lower-buckling. Based on the distribution of the simulated internal force of the anchor cables, the reinforcement scheme was adjusted by strengthening the support for the middle and lower parts of the slope, whereas the length and pre-stress of the anchor cables were reduced for the upper part of the slope. The adjusted reinforcement scheme can ensure the stability of the slope under the action of a magnitude 7 earthquake, and the slope may lose stability with no evident collapse under the action of a magnitude 8 earthquake. Finally, the simulation results were verified via a comparison with the monitoring data regarding the slope.

Funder

General Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3