Left Ventricular Ejection Time Estimation from Blood Pressure and Photoplethysmography Signals Based on Tidal Wave

Author:

Evdochim Lucian1,Dobrescu Dragoș1,Dobrescu Lidia1ORCID,Stanciu Silviu2,Halichidis Stela3

Affiliation:

1. Department of Electronic Devices, Circuits and Architectures, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucharest, Romania

2. Laboratory of Cardiovascular Noninvasive Investigations, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania

3. Department of Clinical Medical Disciplines, Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania

Abstract

Left ventricular ejection time (LVET) is an important parameter for assessing cardiovascular disorders. In a medical office, it is typically measured using the Tissue Doppler Imaging technique, but new wearable devices have led to a growing interest in integrating this parameter into them, increasing accessibility to personalized healthcare for users and patients. In the cardiovascular domain, photoplethysmography (PPG) is a promising technology that shares two distinctive features with invasive arterial blood pressure (ABP) tracing: the tidal wave (TDW) and the dicrotic wave (DCW). In the early years of cardiovascular research, the duration of the dicrotic point was initially linked to the ending phase of left ventricular ejection. Subsequent studies reported deviations from the initial association, suggesting that the ejection period is related to the tidal wave feature. In this current study, we measured left ventricular ejection time in both ABP and PPG waveforms, considering recent research results. A total of 27,000 cardiac cycles were analyzed for both afore-mentioned signals. The reference value for ejection time was computed based on the T-wave segment duration from the electrocardiogram waveform. In lower blood pressure, which is associated with decreased heart contractility, the results indicated an underestimation of −29 ± 19 ms in ABP and an overestimation of 18 ± 31 ms in PPG. On the other side of the spectrum, during increased contractility, the minimum errors were −3 ± 18 ms and 4 ± 33 ms, respectively. Since the tidal wave feature is strongly affected by arterial tree compliance, the population evaluation results indicate a Pearson’s correlation factor of 0.58 in the ABP case, and 0.53 in PPG. These findings highlight the need for advanced compensation techniques, in particular for PPG assessment, to achieve clinical-grade accuracy.

Funder

University Politehnica of Bucharest

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3