Dynamic Canonical Data Model: An Architecture Proposal for the External and Data Loose Coupling for the Integration of Software Units

Author:

Ruíz-Ceniceros Juan Antonio1,Aguilar-Calderón José Alfonso2ORCID,Tripp-Barba Carolina2ORCID,Zaldívar-Colado Aníbal2ORCID

Affiliation:

1. Facultad de Informática Culiacán, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico

2. Facultad de Informática Mazatlán, Universidad Autónoma de Sinaloa, Mazatlan 82017, Mexico

Abstract

Integrating third-party and legacy systems has become a critical necessity for companies, driven by the need to exchange information with various entities such as banks, suppliers, customers, and partners. Ensuring data integrity, keeping integrations up-to-date, reducing transaction risks, and preventing data loss are all vital aspects of this complex task. Achieving success in this endeavor, which involves both technological and business challenges, necessitates the implementation of a well-suited architecture. This article introduces an architecture known as the Dynamic Canonical Data Model through Agnostic Messages. The proposal addresses the integration of loosely coupled software units, mainly when dealing with internal and external data integration. To illustrate the architecture’s components, a case study from the Mexican Logistics Company Paquetexpress is presented. This organization manages integrations across several platforms, including SalesForce and Oracle ERP, with clients like Amazon, Mercado Libre, Grainger, and Afull. Each of these incurs costs ranging from USD 30,000 to USD 36,000, with consultants from firms such as Quanam, K&F, TSOL, and TekSi playing a crucial role in their execution. This consumes much time, making maintenance costs considerably high when clients request data transmission or type changes, particularly when utilizing tools like Oracle Integration Cloud (OIC) or Oracle Service Bus (OSB). The article provides insights into the architecture’s design and implementation in a real-world scenario within the delivery company. The proposed architecture significantly reduces integration and maintenance times and costs while maximizing scalability and encouraging the reuse of components. The source code for this implementation has been registered in the National Registry of Copyrights in Mexico.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3