Structural, Dielectric, and Mechanical Properties of High-Content Cubic Zirconia Ceramics Obtained via Solid-State Synthesis

Author:

Giniyatova Sholpan G.1,Kozlovskiy Artem L.12ORCID,Shakirzyanov Rafael I.1,Volodina Natalia O.1ORCID,Shlimas Dmitriy I.13ORCID,Borgekov Daryn B.13ORCID

Affiliation:

1. Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan

2. Department of General Physics, Satbayev University, Almaty 050032, Kazakhstan

3. Laboratory of Solid State Physics, The Institute of Nuclear Physics, Almaty 050032, Kazakhstan

Abstract

In this work, the structural, electrical, and mechanical properties and phase composition of high-content cubic zirconium oxide ceramics stabilized with Ca were investigated. The novelty of this work lies in evaluating the potential use of porous ceramics obtained using calcium carbonate as a matrix for dispersed nuclear fuel. Experimental samples were prepared using solid-phase synthesis through sintering in air at 1500 °C. The X-ray diffraction method and Raman spectroscopy showed that the fraction of the cubic zirconium oxide ZrO2-c phase gradually increased as the mass concentration changed from Cw = 0.00 to Cw = 0.15, and the CaZrO3 phase was present at concentrations of Cw = 0.20 and Cw = 0.25. When the phase composition was altered, significant changes occurred in the internal microstructure of the ceramics due to the processes of grain sintering and pore formation. Quantitative XRD analysis demonstrated the incorporation of Ca into the cubic structure of the ZrO2-c polymorph. Dielectric spectroscopy at low frequencies revealed that the synthesized ceramics had a dielectric constant of 16.8–22 with a low dielectric loss of ~ 0.005. The microhardness value at a load of 200 kgf (HV0.2) of the obtained samples varied between 5 and 12 GPa and depended on the internal microstructure and phase composition. The obtained results clearly indicate that the mechanical and electrical properties and phase composition of synthesized ceramics make them suitable as a matrix for dispersed nuclear fuels.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3