Error Modeling and Parameter Calibration Method for Industrial Robots Based on 6-DOF Position and Orientation

Author:

Lao Dabao123,Quan Yongbin12,Wang Fang1,Liu Yukun1

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China

3. Beijing Engineering Research Centre of Industrial Spectrum Imaging, Beijing 100083, China

Abstract

The positional accuracy and orientation accuracy of industrial robots are crucial technical indicators for determining their applicability in industrial scenarios. However, the majority of current calibration methods for industrial robots only consider positional errors, neglecting the significance of orientation accuracy. This paper presents a more accurate error model and parameter calibration method for industrial robots based on six degrees-of-freedom position and orientation to identify the actual structural parameters. Firstly, based on the modified Denavit–Hartenberg parameters, the transformation errors of the tool coordinate system and measurement coordinate frame were introduced to establish a geometric parameter error model with positional and orientation accuracy as the optimization objectives. Secondly, to address the drawback of falling into local optima when identifying geometric parameters simultaneously, a geometric parameter cross-identification method based on the Levenberg–Marquardt algorithm is proposed. Lastly, the linear relationship between the parameters was analyzed, and a scheme for not calibrating some geometric parameters under specific conditions was given. Simulation results demonstrated that, under the premise of existing transformation errors, the proposed geometric parameter error model can accurately identify the actual structural parameters of industrial robots. After calibration, the positional error at the robot’s flange end decreased from 1.9536 mm to 0.0122 mm, and the orientation error decreased from 1.46 × 10−2 rad to 1.31 × 10−4 rad. Furthermore, compared to identifying the geometric parameters simultaneously, the proposed cross-identification method has a wider convergence range.

Funder

Scientific and Technological Innovation Foundation of the Shunde Innovation School

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3