Regime-Specific Quant Generative Adversarial Network: A Conditional Generative Adversarial Network for Regime-Specific Deepfakes of Financial Time Series

Author:

Huang Andrew1,Khushi Matloob12,Suleiman Basem13ORCID

Affiliation:

1. School of Computer Science, Sydney University, Cleveland Street, Darlington, NSW 2050, Australia

2. Department of Computer Science, Brunel University London, Uxbridge, London UB8 3PH, UK

3. School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 1466, Australia

Abstract

Simulating financial time series (FTS) data consistent with non-stationary, empirical market behaviour is difficult, but it has valuable applications for financial risk management. A better risk estimation can improve returns on capital and capital efficiency in investment decision making. Challenges to modelling financial risk in market crisis environments are anomalous asset price behaviour and a lack of historical data to learn from. This paper proposes a novel semi-supervised approach for generating regime-specific ‘deep fakes’ of FTS data using generative adversarial networks (GANs). The proposed architecture, a regime-specific Quant GAN (RSQGAN), is a conditional GAN (cGAN) that generates class-conditional synthetic asset return data. Conditional class labels correspond to distinct market regimes that have been detected using a structural breakpoint algorithm to segment FTS into regime classes for simulation. Our RSQGAN approach accurately simulated univariate time series behaviour consistent with specific empirical regimes, outperforming equivalently configured unconditional GANs trained only on crisis regime data. To evaluate the RSQGAN performance for simulating asset return behaviour during crisis environments, we also propose four test metrics that are sensitive to path-dependent behaviour and are also actionable during a crisis environment. Our RSQGAN model design borrows from innovation in the image GAN domain by enabling a user-controlled hyperparameter for adjusting the fit of synthetic data fidelity to real-world data; however, this is at the cost of synthetic data variety. These model features suggest that RSQGAN could be a useful new tool for understanding risk and making investment decisions during a time of market crisis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3