A Combined Semantic Dependency and Lexical Embedding RoBERTa Model for Grid Field Relational Extraction

Author:

Meng Qi1,Zhang Xixiang1,Dong Yun1,Chen Yan23ORCID,Lin Dezhao2

Affiliation:

1. Guangxi Power Grid Co., Ltd., Nanning 530022, China

2. School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

3. Guangxi Intelligent Digital Services Research Center of Engineering Technology, Nanning 530004, China

Abstract

Relationship extraction is a crucial step in the construction of a knowledge graph. In this research, the grid field entity relationship extraction was performed via a labeling approach that used span representation. The subject entity and object entity were used as training instances to bolster the linkage between them. The embedding layer of the RoBERTa pre-training model included word embedding, position embedding, and paragraph embedding information. In addition, semantic dependency was introduced to establish an effective linkage between different entities. To facilitate the effective linkage, an additional lexically labeled embedment was introduced to empower the model to acquire more profound semantic insights. After obtaining the embedding layer, the RoBERTa model was used for multi-task learning of entities and relations. The multi-task information was then fused using the parameter hard sharing mechanism. Finally, after the layer was fully connected, the predicted entity relations were obtained. The approach was tested on a grid field dataset created for this study. The obtained results demonstrated that the proposed model has high performance.

Funder

Guangxi Scientific Research and Technology Development Plan Project

Innovation Project of China Southern Power Grid Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3