Augmented Reality-Assisted Surgical Exposure of an Impacted Tooth: A Pilot Study

Author:

Macrì Monica1ORCID,D’Albis Giuseppe1,D’Albis Vincenzo1,Timeo Simona2,Festa Felice1

Affiliation:

1. Department of Innovative Technologies in Medicine & Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy

2. Interdisciplinary Department of Medicine, Polyclinic of Bari, University of Bari, 70124 Bari, Italy

Abstract

Three-dimensional radiological evaluation through cone beam computer tomography is essential in diagnosing and establishing proper surgical management in impacted teeth. Through Augmented Reality (AR), clinicians have the opportunity to use three-dimensional computer-generated radiologic information to visualise the patient and simultaneously the superimposition of his internal structures. Here, we describe a digital workflow to assist the oral surgeon in pre-orthodontic exposure of a vestibular impacted canine using AR. The AR hardware consists of a camera and a traditional stand-up monitor. The registration and tracking are video-based and marker-free, with an automatic pose estimation obtained through VisLab 20.10.1AR software algorithm’s object recognition and tracking approach. A 3D model is created by combining the anterior teeth taken from the intraoral scan with the same teeth plus the included tooth taken from the CBCT segmentation. The 3D file is uploaded into the AR software. Model tracking is straightforward to set up without prior registration of targets or surroundings. The AR information is used successfully to define the surgical access to perform flap and osteotomy. The accuracy of model tracking matching was calculated constantly by the software. During the tracking, the process recorded an inlier ratio of 0.39:0.48. Further studies and clinical trials will evaluate the value of this novel technology in the management of impacted teeth.

Funder

University Gabriele D’Annunzio of Chieti

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3