Enhanced Effect of Phytoextraction on Arsenic-Contaminated Soil by Microbial Reduction

Author:

Zhao Yuxin1,Cao Jian234ORCID,Chen Pan1

Affiliation:

1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China

2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

3. Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China

4. Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha 410083, China

Abstract

The gradually increasing presence of arsenic, a highly toxic heavy metal, poses a significant threat to both soil environmental safety and human health. Pteris vittata has long been recognized as an efficient hyperaccumulator plant for arsenic pollution. However, the pattern of arsenic accumulation in soil impacts its bioavailability and restricts the extraction efficiency of Pteris vittata. To address this issue, microorganisms have the potential to improve the arsenic accumulation efficiency of Pteris vittata. In this work, we employed anthropogenic enrichment methods to extract functional iron–sulfur-reducing bacteria from soil as a raw material. These bacteria were then utilized to assist Pteris vittata in the phytoremediation of arsenic-contaminated soil. Furthermore, the utilization of organic fertilizer produced from fermented crop straw significantly boosted the remediation effect. This led to an increase in the accumulation efficiency of arsenic by Pteris vittata by 87.56%, while simultaneously reducing the content of available arsenic in the soil by 98.36%. Finally, the experimental phenomena were studied through a soil-microbial batch leaching test and plant potting test. And the mechanism of the microorganism-catalyzed soil iron–sulfur geochemical cycle on arsenic release and transformation in soil as well as the extraction effect of Pteris vittata were systematically investigated using ICP, BCR sequential extraction and XPS analysis. The results demonstrated that using iron–sulfur-reducing microorganisms to enhance the phytoremediation effect is an effective strategy in the field of ecological restoration.

Funder

National key Research and development program

Natural Science Foundation of China

Comprehensive Survey Project for Ecological Restoration in Dongting Lake Wetland

Science and Technology Innovation Program of Hunan Province

National 111 Project

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3