An Efficient Maritime Route Planning Method Based on an Improved A* with an Adaptive Heuristic Function and Parallel Computing Structure

Author:

Li Hanlin1,Qian Longxia1ORCID,Hong Mei2,Wang Xianyue1,Guo Zilong2

Affiliation:

1. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

Abstract

Maritime route planning under minimal-risk conditions plays an important part in the development and utilization of marine resources. High-resolution weather forecasting data places higher demands on the algorithms’ ability to optimize and compute, and existing algorithms are significantly deficient in these aspects. Therefore, we propose a parallel computing-based planning method, segment parallel A* (SPA*), which splits the path into small segments and runs A* separately on CPU cores through a control algorithm. In segment planning, we propose an adaptive heuristic function on A*. It automatically balances the order of magnitude difference between the risk assessment value and the estimated distance, thus significantly reducing the A* expansion useless grid to improve the performance and running speed of the algorithm. Finally, the complete route is obtained by splicing the above segments. In the static planning experiments, the time of SPA* is reduced by about 5~12,425 times compared with 6 traditional and swarm intelligence-based algorithms, i.e., Dijkstra, A*, bidirectional A* (BA*), ant colony optimization (ACO), Harris hawks optimization (HHO), and sparrow search algorithm (SSA). And the abilities to control the risk caused by wind and waves and the comprehensive risk are improved by 7.68%~25.14% and 8.44%~14.38%, respectively; in the dynamic planning experiments, the above results are 4.8~1262.9 times, 3.87%~9.47% and 7.21%~10.36%, respectively. By setting the recommended range of the number of segments for each case, SPA* shows stable performance in terms of the calculation and risk control. SPA* demonstrates a unique structure for using parallel computing in route planning, which is representative and general in both reducing time and improving efficiency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

NUPTSF

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3