Affiliation:
1. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
Abstract
Maritime route planning under minimal-risk conditions plays an important part in the development and utilization of marine resources. High-resolution weather forecasting data places higher demands on the algorithms’ ability to optimize and compute, and existing algorithms are significantly deficient in these aspects. Therefore, we propose a parallel computing-based planning method, segment parallel A* (SPA*), which splits the path into small segments and runs A* separately on CPU cores through a control algorithm. In segment planning, we propose an adaptive heuristic function on A*. It automatically balances the order of magnitude difference between the risk assessment value and the estimated distance, thus significantly reducing the A* expansion useless grid to improve the performance and running speed of the algorithm. Finally, the complete route is obtained by splicing the above segments. In the static planning experiments, the time of SPA* is reduced by about 5~12,425 times compared with 6 traditional and swarm intelligence-based algorithms, i.e., Dijkstra, A*, bidirectional A* (BA*), ant colony optimization (ACO), Harris hawks optimization (HHO), and sparrow search algorithm (SSA). And the abilities to control the risk caused by wind and waves and the comprehensive risk are improved by 7.68%~25.14% and 8.44%~14.38%, respectively; in the dynamic planning experiments, the above results are 4.8~1262.9 times, 3.87%~9.47% and 7.21%~10.36%, respectively. By setting the recommended range of the number of segments for each case, SPA* shows stable performance in terms of the calculation and risk control. SPA* demonstrates a unique structure for using parallel computing in route planning, which is representative and general in both reducing time and improving efficiency.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
NUPTSF
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献