Acoustic Characteristics Analysis of Double-Layer Liquid-Filled Pipes Based on Acoustic–Solid Coupling Theory

Author:

Yan Jin12,Li Jiangfeng13,Zou Lvlong1,Zhang Dapeng1ORCID,Wang Cheng2,Tang Zhi12

Affiliation:

1. Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China

3. College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Based on the theory of acoustic–solid coupling, the phase velocity-thickness product of a double-layer liquid-filled pipeline is analyzed, and the dispersion relationship between angular frequency and wavenumber–thickness product is analyzed, providing a theoretical basis for ultrasonic guided wave detection. The wave number analytical expression of the double-layer liquid-filled pipeline is constructed, and the dispersion relationship of the double-layer liquid-filled pipeline under different frequency–thickness products and wavenumber–thickness products is calculated through parameter scanning. The dispersion curves of the double-layer liquid-filled pipeline are numerically analyzed in the domains of pressure acoustics, solid mechanics, and acoustic–solid coupling. The numerically simulated dispersion curves show high consistency with the analytically calculated dispersion curves. The analysis of the phase velocity frequency–thickness product indicates that the axial mode dispersion curves of the pipe wall decrease with the increase in frequency–thickness product in the coupling domain, and then tend to be flat and intersect with the radial mode dispersion curves in the coupling domain; these intersection points cannot be used for ultrasonic guided wave detection. The T(0,1) mode dispersion curve in the coupling domain of the pressure acoustics domain remains smooth from low frequency to high frequency. It is found that the dispersion curves of the phase velocity frequency–thickness product, angular frequency wavenumber–thickness product, and the acoustic pressure distribution map of the double-layer liquid-filled pipeline based on acoustic–solid coupling can provide theoretical support for ultrasonic guided wave detection of pipelines.

Funder

Natural Science Foundation of Guangdong Province

Special Fund for Promoting High-quality Economic Development of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3