Hybrid Multiple-Organ Segmentation Method Using Multiple U-Nets in PET/CT Images

Author:

Suganuma Yuta1,Teramoto Atsushi2ORCID,Saito Kuniaki1,Fujita Hiroshi3ORCID,Suzuki Yuki4,Tomiyama Noriyuki5,Kido Shoji4

Affiliation:

1. Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan

2. Faculty of Information Engineering, Meijo University, Nagoya 468-8502, Japan

3. Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

4. Department of Artificial Intelligence Diagnostic Radiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan

5. Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan

Abstract

PET/CT can scan low-dose computed tomography (LDCT) images with morphological information and PET images with functional information. Because the whole body is targeted for imaging, PET/CT examinations are important in cancer diagnosis. However, the several images obtained by PET/CT place a heavy burden on radiologists during diagnosis. Thus, the development of computer-aided diagnosis (CAD) and technologies assisting in diagnosis has been requested. However, because FDG accumulation in PET images differs for each organ, recognizing organ regions is essential for developing lesion detection and analysis algorithms for PET/CT images. Therefore, we developed a method for automatically extracting organ regions from PET/CT images using U-Net or DenseUNet, which are deep-learning-based segmentation networks. The proposed method is a hybrid approach combining morphological and functional information obtained from LDCT and PET images. Moreover, pre-training using ImageNet and RadImageNet was performed and compared. The best extraction accuracy was obtained by pre-training ImageNet with Dice indices of 94.1, 93.9, 91.3, and 75.1% for the liver, kidney, spleen, and pancreas, respectively. This method obtained better extraction accuracy for low-quality PET/CT images than did existing studies on PET/CT images and was comparable to existing studies on diagnostic contrast-enhanced CT images using the hybrid method and pre-training.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3