Research on Characteristics of Flow Noise and Flow-Induced Noise

Author:

Li Bingru1,Xu Xudong1ORCID,Wu Junhan1,Zhang Luomin1,Wan Zhanhong2

Affiliation:

1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. Ocean College, Zhejiang University, Zhoushan 316021, China

Abstract

The noise control of flank array sonar is a primary approach to enhance the sonar detection range. During submarine navigation, hydrodynamic noise is the main noise source in the platform region of the flank array sonar, which includes flow noise and flow-induced noise. Therefore, an in-depth investigation of hydrodynamic noise is necessary. In this paper, we firstly take the teardrop submarine as a computational model to validate the computational method. Afterwards, we numerically simulate the flow and flow-induced noise characteristics for the cylindrical shell model, and investigate differences in noise at different detection points along the X, Y, and Z axes. Finally, experiments are conducted to confirm the accuracy of the simulation results. The research findings reveal that, at the same frequency, flow-induced noise exceeds flow noise, and the noise decreases as the distance between the walls of the cylindrical shell increases. The experimental and simulation results are consistent, suggesting that the selected computational method can precisely simulate the submarine’s noise.

Funder

National Natural Science Foundation of China

Science and Technology on Sonar Laboratory Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3