U-Net-Based Semi-Automatic Semantic Segmentation Using Adaptive Differential Evolution

Author:

Ono Keiko1,Tawara Daisuke2,Tani Yuki3,Yamakawa Sohei3ORCID,Yakushijin Shoma4

Affiliation:

1. Faculty of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan

2. Faculty of Advanced Science and Technology, Ryukoku University, Kyoto 612-8577, Japan

3. Graduate School of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan

4. Graduate School of Science and Technology, Ryukoku University, Kyoto 612-8577, Japan

Abstract

Bone semantic segmentation is essential for generating a bone simulation model for automatic diagnoses, and a convolution neural network model is often applied to semantic segmentation. However, ground-truth (GT) images, which are generated based on handwriting borderlines, are required to learn this model. It takes a great deal of time to generate accurate GTs from handwriting borderlines, which is the main reason why bone simulation has not been put to practical use for diagnosis. With the above in mind, we propose the U-net-based semi-automatic semantic segmentation method detailed in this paper to tackle the problem. Moreover, bone computed tomography (CT) images are often presented in digital imaging and communications in medicine format, which consists of various parameters and affects the image quality for segmentation. We also propose a novel adaptive input image generator using an adaptive differential evolution. We evaluate the proposed method compared to conventional U-net and DeepLabv3 models using open bone datasets, the spine and the femur, and our artificial bone data. Performance evaluations show that the proposed method outperforms U-net and DeepLabv3 in terms of Dice, IoU, and pairwise accuracy, and DeepLabv3 show the lowest performance, due to a lack of training data. We verify that the U-net-based model is effective for bone segmentation, where a large quantity of training data are available. Moreover, we verify that the proposed method can effectively create proper GTs and input images, resulting in increased performance and reduced computational costs. We believe that the proposed method enhances the wide use of bone simulation based on CT images for practical use.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3