The Detection of False Data Injection Attack for Cyber–Physical Power Systems Considering a Multi-Attack Mode

Author:

Zhou Buxiang12,Li Xuan12,Zang Tianlei12ORCID,Cai Yating12,Wu Jiale12,Wang Shijun12

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

2. Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China

Abstract

Amidst the evolving communication technology landscape, conventional distribution networks have gradually metamorphosed into cyber–physical power systems (CPPSs). Within this transformative milieu, the cyber infrastructure not only bolsters grid security but also introduces a novel security peril—the false data injection attack (FDIA). Owing to the variable knowledge held by cyber assailants regarding the system’s network structure, current achievements exhibit deficiencies in accommodating the detection of FDIA across diverse attacker profiles. To address the historical data imbalances encountered during practical FDIA detection, we propose a dataset balancing model based on generating adversarial network-gated recurrent units (GAN-GRU) in conjunction with an FDIA detection model based on the Transformer neural network. Harnessing the temporal data extraction capabilities of gated recurrent units, we construct a GRU neural network system as the GAN’s generator and discriminator, aimed at data balance. After preprocessing, the balanced data are fed into the Transformer neural network for training and output classification to discern distinct FDIA attack types. This model enables precise classification amidst varying FDIA scenarios. Validation involves testing the model on load data from the IEEE 118-bus system and affirming its high accuracy and effectiveness in detecting power systems after multiple attacks.

Funder

the National Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3