Assessing Weak Adhesion in Single Lap Joints Using Lamb Waves and Machine Learning Methods for Structural Health Monitoring

Author:

Ramalho Gabriel M. F.1ORCID,Lopes António M.12ORCID,da Silva Lucas F. M.12ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

2. INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal

Abstract

The use of adhesive joints has become increasingly popular in various industries due to their many benefits, such as low weight and good mechanical performance. However, adhesive joints can suffer from defects, one of them being weak adhesion. This defect poses a significant risk to structural integrity and can lead to premature failure, but is hard to detect using existing nondestructive testing methods. Therefore, there is a need for an effective technique that can detect weak adhesion in single-lap joints (SLJ) to prevent failure and assist in maintenance, namely in the framework of structural health monitoring. This paper presents a novel approach utilizing machine learning and Lamb Waves (LW) to determine the level of weak adhesion. Firstly, a numerical model of SLJs with different levels of weak adhesion is created and an original approach is proposed for its validation with data from real samples so that reliable LW data can further be easily generated to train and test any other data-driven algorithm for tackling damage. Secondly, a damage detection method is proposed, based on artificial neural networks and fed with simulated data, to determine the level of damage in SLJs, independent of their location. The results show that the simulation model can be validated with a small set of experimental data, being capable of replicating real damage in SLJs. Additionally, the use of simulated data in the training algorithm can increase the accuracy of the simulation model up to 26% when compared to only considering experimental data. The adopted artificial neural network for detecting weak adhesion emerges as a promising approach, yielding a precision of over 95%. Thus, machine learning and LW data can be used to improve the reliability and accuracy of adhesive bonding quality control, as well function as a technique for structural health monitoring, which can enhance the safety and durability of bonded structures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3