Generative Adversarial Network-Based Anomaly Detection and Forecasting with Unlabeled Data for 5G Vertical Applications

Author:

Zhang Qing12,Chen Bin1,Zhang Taoye1,Cao Kang1,Ding Yuming1,Gao Tianhang1,Zhao Zhongyuan2

Affiliation:

1. Intelligent Network Innovation Center, China Unicom, Beijing 100048, China

2. The State Key Laboratory of Networking and Switching Technology, School of Information and Communications Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

With the development of 5G vertical applications, a huge amount of unlabeled network data can be collected, which can be employed for evaluating the user experience and network operation status, such as the identifications and predictions of network anomalies. However, it is challenging to achieve highly accurate evaluation results using the conventional statistical methods due to the limitations of data quality. In this paper, generative adversarial network (GAN)-based anomaly detection and forecasting are studied for 5G vertical applications, which can provide considerable detection and prediction results with unlabeled network data samples. First, the paradigm and deployment of the deep-learning-based anomaly detection and forecasting scheme are designed. Second, the network structure and the training strategy are introduced to fully explore the potential of the GAN model. Finally, the experimental results of our proposed GAN model are provided based on the practical unlabeled network operation data in various 5G vertical scenarios, which show that our proposed scheme can achieve significant performance gains for network anomaly detection and forecasting.

Funder

National Natural Science Foundation

Beijing Natural Science Foundation

5G Evolution Wireless Air interface Intelligent R&D and Verification Public Platform Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative AI in Network Security and Intrusion Detection;Advances in Information Security, Privacy, and Ethics;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3