Potential Synergistic Inhibition of Enterococcus faecalis by Essential Oils and Antibiotics

Author:

John Stanley1,Lee Jeung Woon1,Lamichhane Purushottam1,Dinh Thanhphuong1,Nolan Todd1,Yoon Thomas1

Affiliation:

1. LECOM School of Dental Medicine, 4800 Lakewood Ranch Blvd., Bradenton, FL 34211, USA

Abstract

Recurrent infections after root canal treatments often involve Enterococcus faecalis, a microorganism closely associated with therapy failures due to its biofilm production, survival in nutrient-deprived conditions, and antibiotic tolerance. Essential oils (EOs), which display antimicrobial and antibacterial properties, exhibit inhibitory effects on the growth of many microorganisms including E. faecalis. This study assessed the in vitro efficacy of combining 5% antibiotics (kanamycin 2.5 mg/mL, streptomycin 2.5 mg/mL, gentamicin 1.5 mg/mL, and ampicillin 5 mg/mL) with cinnamon (1.25% to 5%) or clove (25% and 50%) EOs in inhibiting the growth of E. faecalis, using disk diffusion tests. Disks were treated with EOs-only, antibiotics-only, or EO–antibiotic combinations, placed on BEA agar plates, and incubated for 24 h, and the zones of inhibition were measured. Results showed that EOs (cinnamon and clove) and 5% antibiotics, by themselves, had robust growth inhibition of E. faecalis across all tested concentrations. Moreover, combining 5% aminoglycosides (kanamycin 2.5 mg/mL, streptomycin 2.5 mg/mL, and gentamicin 1.5 mg/mL) with 5% cinnamon EO produced significantly enhanced antimicrobial effect than the corresponding 10% antibiotic solution alone. These findings suggest that combining cinnamon EO with aminoglycoside antibiotics can achieve significant inhibition of E. faecalis at a lower concentration of antibiotics compared to using a higher dose of antibiotics alone. Further in vivo studies should determine the safety, efficacy, and treatment duration, with the potential to reduce antibiotic dosages and associated toxicity while preventing recurrent infections.

Funder

LECOM

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3