Autonomous Control System with Passive Positioning for Unmanned-Aerial-Vehicle-Assisted Edge Communication in 6G

Author:

Hu Yue12,Jiang Yunzhe3,Liu Yinqiu4ORCID,He Xiaoming5

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing 210024, China

2. NARI Technology Co., Ltd., Nanjing 210047, China

3. School of Communications and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

4. School of Computer Science and Engineering, Nanyang Technological University, Singapore 637121, Singapore

5. College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210000, China

Abstract

UAVs can be deployed in many scenarios to provide various types of services via 6G edge communication. In these scenarios, it is necessary to obtain the position of the UAVs in a timely and accurate manner to avoid UAV collisions. In this paper, we consider improved passive localization algorithms aimed at reducing convergence time and adapting to extreme conditions. For the sake of reducing the complexity of signals and ensuring the reliability of receiving processes, we reconsidered the angle between arrival signals as the feature in positioning. Then, according to the characteristics of the positioning process, we draw on the cyclical process of the iterative greedy algorithm to construct the coding, destruction, and reorganization process to guide the movement of the UAV. Moreover, an improved Metropolis criterion is added to prevent falling into the local optimal solution. Finally, the proposed algorithm is verified in the simulation results. The results show that the algorithm can achieve precise positioning and excellent track planning within a small number of iterations, and it reduces the amount of information carried by the signal and convergence time compared with the traditional method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3