Integration of Crowdsourced Images, USGS Networks, Remote Sensing, and a Model to Assess Flood Depth during Hurricane Florence

Author:

Hultquist Carolynne,Cervone GuidoORCID

Abstract

Crowdsourced environmental data have the potential to augment traditional data sources during disasters. Traditional sensor networks, satellite remote sensing imagery, and models are all faced with limitations in observational inputs, forecasts, and resolution. This study integrates flood depth derived from crowdsourced images with U.S. Geological Survey (USGS) ground-based observation networks, a remote sensing product, and a model during Hurricane Florence. The data sources are compared using cross-sections to assess flood depth in areas impacted by Hurricane Florence. Automated methods can be used for each source to classify flooded regions and fuse the dataset over common grids to identify areas of flooding. Crowdsourced data can play a major role when there are overlaps of sources that can be used for validation as well providing improved coverage and resolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Damage Assessment of the Urban Environment during Disasters using Volunteered Geographic Information;Hultquist,2017

2. Next Steps for Citizen Science

3. Crowdsourcing roles, methods and tools for data-intensive disaster management

4. Connecting Grassroots and Government for Disaster Response;Crowley,2013

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3