Procedural Reconstruction of 3D Indoor Models from Lidar Data Using Reversible Jump Markov Chain Monte Carlo

Author:

Tran Ha,Khoshelham KouroshORCID

Abstract

Automated reconstruction of Building Information Models (BIMs) from point clouds has been an intensive and challenging research topic for decades. Traditionally, 3D models of indoor environments are reconstructed purely by data-driven methods, which are susceptible to erroneous and incomplete data. Procedural-based methods such as the shape grammar are more robust to uncertainty and incompleteness of the data as they exploit the regularity and repetition of structural elements and architectural design principles in the reconstruction. Nevertheless, these methods are often limited to simple architectural styles: the so-called Manhattan design. In this paper, we propose a new method based on a combination of a shape grammar and a data-driven process for procedural modelling of indoor environments from a point cloud. The core idea behind the integration is to apply a stochastic process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the automated application of grammar rules in the derivation of a 3D indoor model. Experiments on synthetic and real data sets show the applicability of the method to efficiently generate 3D indoor models of both Manhattan and non-Manhattan environments with high accuracy, completeness, and correctness.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3