Responses of Seasonal Indicators to Extreme Droughts in Southwest China

Author:

Lai Peiyu,Zhang MiaoORCID,Ge Zhongxi,Hao BinfeiORCID,Song ZengjingORCID,Huang Jing,Ma MingguoORCID,Yang HongORCID,Han Xujun

Abstract

Significant impact of extreme droughts on human society and ecosystem has occurred in many places of the world, for example, Southwest China (SWC). Considerable research concentrated on analyzing causes and effects of droughts in SWC, but few studies have examined seasonal indicators, such as variations of surface water and vegetation phenology. With the ongoing satellite missions, more and more earth observation data become available to environmental studies. Exploring the responses of seasonal indicators from satellite data to drought is helpful for the future drought forecast and management. This study analyzed the seasonal responses of surface water and vegetation phenology to drought in SWC using the multi-source data including Seasonal Water Area (SWA), Permanent Water Area (PWA), Start of Season (SOS), End of Season (EOS), Length of Season (LOS), precipitation, temperature, solar radiation, evapotranspiration, the Palmer Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) and data from water conservancy construction. The results showed that SWA and LOS effectively revealed the development and recovery of droughts. There were two obvious drought periods from 2000 to 2017. In the first period (from August 2003 to June 2007), SWA decreased by 11.81% and LOS shortened by 5 days. They reduced by 21.04% and 9 days respectively in the second period (from September 2009 to June 2014), which indicated that there are more severe droughts in the second period. The SOS during two drought periods delayed by 3~6 days in spring, while the EOS advanced 1~3 days in autumn. All of PDSI, SWA and LOS could reflect the period of droughts in SWC, but the LOS and PDSI were very sensitive to the meteorological events, such as precipitation and temperature, while the SWA performed a more stable reaction to drought and could be a good indicator for the drought periodicity. This made it possible for using SWA in drought forecast because of the strong correlation between SWA and drought. Our results improved the understanding of seasonal responses to extreme droughts in SWC, which will be helpful to the drought monitoring and mitigation for different seasons in this ecologically fragile region.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3