Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision

Author:

Alsafasfeh Moath,Abdel-Qader Ikhlas,Bazuin Bradley,Alsafasfeh Qais,Su Wencong

Abstract

One of the most important sources of clean energy in the future is expected to be solar energy which is considered a real time source. Research efforts to optimize solar energy utilization are mainly concentrated on the components of solar energy systems. Photovoltaic (PV) modules are considered the main components of solar energy systems and PVs’ operations typically occur without any supervisory mechanisms, which means many external and/or internal obstacles can occur and hinder a system’s efficiency. To avoid these problems, the paper presents a system to address and detect the faults in a PV system by providing a safer and more time efficient inspection system in real time. In this paper, we proposing a real time inspection and fault detection system for PV modules. The system has two cameras, a thermal and a Charge-Coupled Device CCD. They are mounted on a drone and they used to capture the scene of the PV modules simultaneously while the drone is flying over the solar garden. A mobile PV system has been constructed primarily to validate our real time proposed system and for the proposed method in the Digital Image and Signal Processing Laboratory (DISPLAY) at Western Michigan University (WMU). Defects have been detected accurately in the PV modules using the proposed real time system. As a result, the proposed drone mounted system is capable of analyzing thermal and CCD videos in order to detect different faults in PV systems, and give location information in terms of panel location by longitude and latitude.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3