Performance Analysis on the Optimum Control of a Calorimeter with a Heat Recovery Unit for a Heat Pump

Author:

Amoabeng Kofi,Choi Jong

Abstract

Heat pumps are used in many applications, both in households and industries, for space air conditioning and hot water provision. The calorimeter is the equipment used in testing the heat pump system to obtain performance data. In the conventional testing mode and under standard conditions, the calorimeter utilizes a lot of energy through refrigeration and heating systems. In this study, a newly developed calorimeter with a heat recovery unit was used to test the performance of a water-to-water heat pump system. The aim was to minimize the rate of energy used in the conventional calorimeter. Two heat recovery control methods were adopted. In the control (1), the heat recovery unit was used to control the inlet water temperature setpoint for the heat pump indoor heat exchanger, whereas in control (2), the heat recovery unit was used to control the inlet water temperature setpoint for the heat pump outdoor heat exchanger. Tests were executed by varying the operating mode and test conditions. For the heating operating mode, the inlet water setpoint temperatures for the indoor and outdoor heat pump heat exchangers were 40 °C and 5 °C, respectively, whereas for the cooling mode, the inlet water setpoint temperatures for the outdoor and indoor heat pump heat exchangers were 25 °C and 12 °C, respectively. The analyses of the experimental results revealed that the energy saving of the calorimeter with heat recovery was about 71% in cooling mode and 73% in heating mode compared to the conventional calorimeter. Also, the energy consumption of the proposed calorimeter was analyzed based on the control methods. In heating mode, the calorimeter performance was enhanced when the control (2) strategy was used because the energy saving was about 8 to 13% compared to control (1). However, in the cooling mode test, it was the control (1) method that resulted in energy savings of about 6.4 to 21% compared to the control (2) method.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3