Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant

Author:

Bhatt Dhananjay,Shrestha Ankita,Dahal Raj,Acharya Bishnu,Basu Prabir,MacEwen Richard

Abstract

The high moisture content of biosolid from a wastewater treatment plant limits its use for agriculture and energy applications. This limitation could be obviated by hydrothermal carbonization, which requires less energy compared to other thermochemical treatment processes, and results in stabilized solid hydrochar product. The present study examined this option by hydrothermally treating the biosolid at three temperatures (180, 200 and 220 °C) for 30 min, and at 200 °C for 15, 30 and 60 min. An increase of 50% in the heating value of the biosolid was obtained after this carbonization. A reduction in the nitrogen concentration in hydrochar was noted with an increase in phosphorus concentration, but potassium concentration remained largely unchanged. Additionally, the carbon to nitrogen ratio in the hydrochar product was higher than the biosolid that makes it suitable for agriculture applications. The chemical oxygen demand of the process water was in the range of 83,000 to 96,000 mg/L. The study thus provides insight into high-value products that can be generated by the hydrothermal carbonization of biosolids.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. North East Biosolids and Residuals Association (NEBRA), 2007. A National Biosolids Regulation, Quality, End Use and Disposal Surveyhttps://static1.squarespace.com/static/54806478e4b0dc44e1698e88/t/5488541fe4b03c0a9b8ee09b/1418220575693/NtlBiosolidsReport-20July07.pdf

2. Canadian Council of Ministers of the Environment (CCME), Canada-wide Approach for the Management of Wastewater Biosolidshttps://www.ccme.ca/files/Resources/waste/biosolids/pn_1477_biosolids_cw_approach_e.pdf

3. Risks Associated with Application of Municipal Biosolids to Agricultural Lands in a Canadian Contexthttp://www.cwn-rce.ca/assets/resources/pdf/McCarthy-Risks-Biosolids-2015.pdf

4. Introduction to Biomass Energy Conversion;Capareda,2013

5. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3