Abstract
Organic Rankine cycle (ORC) is a reliable technology to recover low-grade heat sources. The radial-inflow turbine is a critical component, which has a significant influence on the overall efficiency of ORC system. This study investigates the effects of the blade installation angle and blade number on the flow performance of radial-inflow turbine stator. R245fa and toluene were selected as the working fluids in the low and high temperature range, respectively. Two-dimensional stator blades model for the two working fluids were established, and numerical simulation was conducted through Computational Fluid Dynamics (CFD) software. The results show that for low temperature working fluid R245fa, when the installation angle is 32° and blade number is 22, the distribution of static pressure along the stator blade has no obvious pressure fluctuation, and the flow loss is least. Meanwhile, the stator blade obtained the optimal performance. For high temperature working fluid toluene, when the installation angle is 28° and blade number is 32, the average outlet temperature is the lowest, while the average outlet velocity is the largest. The flow state is well and smooth, and the remarkable flow separation and shock wave are not present. Moreover, the stator blade for R245fa has a larger chord length, cascade inlet diameter, and cascade outside diameter but a lower blade number compared to toluene.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献