Resilience Assessment and Its Enhancement in Tackling Adverse Impact of Ice Disasters for Power Transmission Systems

Author:

Lu Jiazheng,Guo Jun,Jian Zhou,Yang Yihao,Tang WenhuORCID

Abstract

Ice disasters have frequently occurred worldwide in recent years, which seriously affected power transmission system operations. To improve the resilience of power grids and minimize economic losses, this paper proposes a framework for assessing the influence of ice disasters on the resilience of power transmission systems. This method considers the spatial–temporal impact of ice disasters on the resilience of power transmission systems, and the contingence set for risk assessment is established according to contingency probabilities. Based on meteorological data, the outage models of power transmission components are developed in the form of generic fragility curves, and the ice load is given by a simplified freezing rain ice model. A cell partition method is adopted to analyze the way ice disasters affect the operation of power transmission systems. The sequential Monte Carlo simulation method is used to assess resilience for capturing the stochastic impact of ice disasters and deriving the contingency set. Finally, the IEEE RTS-79 system is employed to investigate the impact of ice disasters by two case studies, which demonstrate the viability and effectiveness of the proposed framework. In turn, the results help recognize the resilience of the system under such disasters and the effects of different resilience enhancement measures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Model for Resilience Evaluation of Power-Gas Systems Under Windstorms;CSEE J POWER ENERGY;2024

2. Framework for Risk Assessment of the Electrical Power Grid Under Extreme Weather Conditions;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

3. Review of Power System Resilience: Operation Stages, Vulnerabilities, and Modeling Approaches;2024 IEEE International Conference on Electro Information Technology (eIT);2024-05-30

4. Review of Power System Resilience Concept, Assessment, and Enhancement Measures;Applied Sciences;2024-02-09

5. Power Systems’ Resilience: A Comprehensive Literature Review;Energies;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3