Abstract
Fatigue is a dominant failure mechanism of several engineering components. One technique for increasing the fatigue life is by inducing surface residual stress to inhibit crack initiation. In this review, a microstructural study under various bulk (such as severe plastic deformation) and surface mechanical treatments is detailed. The effect of individual microstructural feature, residual stress, and strain hardening on mechanical properties and fatigue crack mechanisms are discussed in detail with a focus on nickel-based superalloys. Attention is given to the gradient microstructure and interface boundary behavior for the mechanical performance. It is recommended that hybrid processes, such as shot peening (SP) followed by deep cold rolling (DCR), could enhance fatigue life. The technical and scientific understanding of microstructural features delineated here could be useful for developing materials for fatigue performance.
Subject
General Materials Science
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献