Author:
Meng Fanchao,Wu Yuying,Hu Kaiqi,Li Yang,Sun Qianqian,Liu Xiangfa
Abstract
The evolution of three major heat-resistant phases (δ-Al3CuNi, γ-Al7Cu4Ni, T-Al9FeNi) and its strengthening effects at high temperature in Al–Si piston alloys with various Fe/Ni ratios were studied using field emission scanning electron microscope (FE-SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). With the increase of Fe/Ni ratios, the heat-resistant phases begin to evolve in category, morphology, and distribution. The results show that a suitable Fe/Ni ratio will cause the T-Al9FeNi phase to appear and form a closed or semi-closed network with δ-Al3CuNi and γ-Al7Cu4Ni phases instead of the originally isolated heat-resistant phases. As a result, the ultimate tensile strength of the optimized alloy reached 106 MPa with a Fe/Ni ratio of 0.23, which was 23.3% higher than that of base alloy at 350 °C, which is attributed to the fact that a closed or semi-closed network microstructure is advantageous to the bearing of mechanical loads. This work may provide useful ideas for the development of high temperature resistant piston alloys.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献