The Strengthening and Toughening of Biodegradable Poly (Lactic Acid) Using the SiO2-PBA Core–Shell Nanoparticle

Author:

He Hailing,Pang Yuezhao,Duan Zhiwei,Luo Na,Wang Zhenqing

Abstract

The balance of strengthening and toughening of poly (lactic acid) (PLA) has been an intractable challenge of PLA nanocomposite development for many years. In this paper, core–shell nanoparticles consisting of a silica rigid core and poly (butyl acrylate) (PBA) flexible shell were incorporated to achieve the simultaneous enhancement of the strength and toughness of PLA. The effect of core–shell nanoparticles on the tensile, flexural and Charpy impact properties of PLA nanocomposite were experimentally investigated. Scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the toughening mechanisms of nanocomposites. The experimental results showed that the addition of core–shell nanoparticles can improve the stiffness and strength of PLA. Meanwhile, its elongation at break, tensile toughness and impact resistance were enhanced simultaneously. These observations can be attributed to the cavitation of the flexible shell in core–shell nanoparticles and the resultant shear yielding of the matrix. In addition, a three-dimensional finite element model was also proposed to illustrate the damage processes of core–shell nanoparticle-reinforced polymer composites. It was found that, compared with the experimental performance, the proposed micromechanical model is favorable to illustrate the mechanical behavior of nanocomposites.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3