Performances of Using Geopolymers Made with Various Stabilizers for Deep Mixing

Author:

Canakci Hanifi,Güllü Hamza,Alhashemy Ali

Abstract

This research aims to experimentally investigate the potential use of a geopolymer made from various stabilizers or byproducts (fly ash (FA-F, FA-C), slag (SL), glass powder (GP), metakaolin (MK), marble powder (MP), bottom ash (BA), rice husk ash (RHA), silica fume (SF)) to enhance the mechanical performance of soil (clay) via a deep mixing technique. Strengths of geopolymer soilcrete specimens were determined by unconfined compressive strength (UCS) tests regarding curing times (7 to 365 days) by comparing with Portland cement (PC). In addition, ultrasonic pulse velocity (UPV) tests, the effect of molarity (8–16 M), stress-strain behavior, failure modes, and microstructure (SEM, EDX) of geopolymer specimens were examined. Compared to PC, UCS responses of geopolymer specimens yielded: (i) a decreasing trend for FA-F, GP, MK, BA, and MP + FA-F, (ii) an increasing trend for FA-C, SL, and combinations of SL (BA + SL, RHA + SL, SF + SL, MK + SL) favorable with fewer proportions of stabilizers, and (iii) higher increments due to long-term curing (90, 365 days). Despite some decrements, most UCS values were found acceptable (>0.2 MPa) for sufficient enhancement of soft clay. The UCS results were mostly confirmed by UPV performances. The geopolymer specimens were also found to present: (i) strength development for alkaline concentrations from 10 to 14 M, (ii) brittle behavior of stress–strain curves that failed in axial splitting and near axial directions, and (iii) intensity of the silica peak for strength responsibility of the dense microstructure. The findings relatively support the usage of stabilizers or byproducts in the production of geopolymers for potential use in deep mixing. Thus, this research could be a basis for further efforts in this area.

Publisher

MDPI AG

Subject

General Materials Science

Reference78 articles.

1. Foundation Analysis and Design;Bowles,1996

2. Geotechnical Engineering: Principles and Practices;Coduto,1999

3. Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns

4. The Deep Mixing Method;Kitazume,2013

5. State of the art in deep mixing technology: part I. Basic concepts and overview;Porbaha,1998

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3