Superplastic Deformation Behavior of Rolled Mg-8Al-2Sn and Mg-8Al-1Sn-1Zn Alloys at High Temperatures

Author:

Zhang Shao-You,Wang Cheng,Zhao Long-Qing,Ma Pin-Kui,Song Jia-Wang,Xu Jin,Cheng Xiu-Ming,Wang Hui-Yuan

Abstract

The high-temperature superplastic deformation behavior of rolled Mg-8Al-2Sn (AT82) and Mg-8Al-1Sn-1Zn (ATZ811) alloys were investigated in this study. During tensile deformation at 573 K, no obvious grain growth occurred in both alloys, because of the high-volume fraction of second phases located at grain boundaries. Meanwhile, texture weakening was observed, suggesting that grain boundary sliding (GBS) is the dominant superplastic deformation mechanism, which agreed well with the strain rate sensitivity (m) and the activation energy (Q) calculations. The microstructural evolution during tensile deformation manifested that there were more and larger cavities in AT82 than ATZ811 during high-temperature tensile deformation. Therefore, superior superplasticity was found in the ATZ811 alloy that presented a tensile elongation of ~510% under a strain rate of 10−3 s−1 at 573 K, in contrast to the relatively inferior elongation of ~380% for the AT82 alloy. Meanwhile, good tensile properties at ambient temperature were also obtained in ATZ811 alloy, showing the ultimate tensile strength (UTS) of ~355 MPa, yield strength (YS) of ~250 MPa and elongation of ~18%. Excellent mechanical performance at both ambient and elevated temperatures can be realized by using economical elements and conventional rolling process, which is desirable for the industrial application of Mg alloy sheets.

Funder

Changjiang Scholar Program of Chinese Ministry of Education

National Natural Science Foundation of China

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3