Author:
Hu Dao-chun,Wang Lei,Wang Hong-jun
Abstract
Multiple hot-compression tests were carried out on the 6082 aluminum (Al) alloy using a Gleeble-1500 thermal simulation testing machine. Data on flow stresses of the 6082 Al alloy at deformation temperatures of 623 to 773 K and strain rates from 0.01 to 5 s−1 were attained. Utilizing electron backscatter diffraction (EBSD) and a transmission electron microscope (TEM), the dynamic recrystallization behaviors of the 6082 Al alloy during hot compression in isothermal conditions were explored. With the test data, a hot-working processing map for the 6082 Al alloy (based on dynamic material modeling (DMM)) was drawn. Using the work-hardening rate, the initial critical strain causing dynamic recrystallization was determined, and an equation for the critical strain was constructed. A dynamic model for the dynamic recrystallization of the 6082 Al alloy was established using analyses and test results from the EBSD. The results showed that the safe processing zone (with a high efficiency of power dissipation) mainly corresponded to a zone with deformation temperatures of 703 to 763 K and strain rates of 0.1 to 0.3 s−1. The alloy was mainly subjected to continuous dynamic recrystallization in the formation of the zone. According to the hot-working processing map and an analysis of the microstructures, it is advised that the following technological parameters be selected for the 6082 Al alloy during hot-forming: a range of temperatures between 713 and 753 K and strain rates between 0.1 and 0.2 s−1.
Funder
Natural Science Foundation of Zhejiang Province
Subject
General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献