Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method

Author:

Oloyede Christopher Tunji1ORCID,Jekayinfa Simeon Olatayo1ORCID,Alade Abass Olanrewaju2,Ogunkunle Oyetola3ORCID,Laseinde Opeyeolu Timothy3ORCID,Adebayo Ademola Oyejide1ORCID,Abdulkareem Adeola Ibrahim1,Smaisim Ghassan Fadhil45ORCID,Fattah I.M.R.6ORCID

Affiliation:

1. Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria

2. Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria

3. Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa

4. Department of Mechanical Engineering, Faculty of Engineering, University of Kufa, Najaf 54001, Iraq

5. Nanotechnology and Advanced Materials Research Unit (NAMRU), Faculty of Engineering, University of Kufa, Najaf 54001, Iraq

6. Centre for Technology in Water and Wastewater (CTWW), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

The use of biobased heterogeneous catalysts made from agricultural waste for producing biodiesel has gained attention for its potential to create a sustainable and low-cost process. The blending of two or more biomass residues to create more viable biobased catalysts is still in its early stages. In this study, a Biobased Composite Heterogeneous Catalyst (CHC) was made by blending the shells of periwinkle (PWS), melon seed-husk (MSH), and locust bean pod-husk (LBP) at a mixing ratio of 67:17:17 using Simplex Lattice Design Mixture, that was then calcined for 4 h at 800 °C. The chemical, structural, and morphological components of the CHC were characterized via XRF, XRD, SEM-EDX, BET, TGA/DSC, and FTIR to assess its catalytic potential. The CHC was employed to synthesize biodiesel from palm kernel oil, and the process optimization was conducted using the Taguchi approach. The XRF analysis showed that the catalyst had 69.049 of Calcium (Ca) and 9.472 of potassium (K) in their elemental and oxide states as 61.592% calcium oxide and 7.919% potassium oxide. This was also supported by the EDX result, that showed an appreciable value of 58.00% of Ca and 2.30% of magnesium, that perhaps provided the active site in the transesterification reaction to synthesize biodiesel. The morphological and physisorption isotherms via SEM and BET showed mesoporous structures in the CHC that were made up of nanoparticles. A high maximum biodiesel yield of 90.207 wt.% was attained under the optimized process conditions. The catalyst could be reused for up to four cycles, and the biodiesel produced met both ASTM D6751 and EN 14214 standards for biodiesel. This study demonstrates that blending PWS, MSH, and LBP waste materials can produce high-quality biodiesel without the need for additional catalysts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3