Probing the Pre-Ignition Behavior of Negative Temperature Coefficient Fuels at Low to High Temperatures: A Case Study of Dimethyl Ether

Author:

Huang Wenlin1,Wu Honghuan1ORCID,Sun Wuchuan1ORCID,Hong Congjie1,Tian Zemin2,Yan Yingwen2,Huang Zuohua1,Zhang Yingjia1

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Pre-ignition, involving complex interactions of physical and chemical processes, occurs not only in actual combustion engines but also in fundamental research equipment such as rapid compression machines and shock tubes. Thus, identifying the combustion conditions prone to pre-ignition is critical for the interpretation of ignition data and fuel design. Shock tube experiments with dimethyl ether (DME) were carried out in this study to investigate the pre-ignition behavior during fuel auto-ignition. The experimental conditions included a wide range of temperatures (620–1370 K), pressures (1–9 atm), and equivalence ratios (0.5–5.0). The results indicate that pre-ignition of DME is prone to occur in the transition region from a high temperature to an intermediate temperature (~1000 K), and the decrease in pressure and equivalency ratio will aggravate the pre-ignition behavior. Theoretical analysis was then performed using four physical-based criteria: temperature perturbation sensitivity of ignition delay times, thermal diffusivity, a dimensionless parameter analogous to the Damköhler number, and the Sankaran number. According to experimental observations and theoretical analysis, it was found that the temperature sensitivity (Stp = 75 μs/K) and Sankaran number (Sap = 1) are the best available criteria for predicting the pre-ignition behavior of negative temperature coefficient (NTC) fuels. The pre-ignition region of non-NTC fuels can be accurately predicted by thermal diffusivity and the Damköhler number, but they deviate greatly when predicting the pre-ignition of NTC fuels. This strategy is expected to provide a feasible method for identifying the critical conditions under which pre-ignition may occur and for revealing the pre-ignition mechanisms for other NTC fuels.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3