Investigation of Pyrolysis Kinetic Triplet, Thermodynamics, Product Characteristics and Reaction Mechanism of Waste Cooking Oil Biodiesel under the Influence of Copper Slag

Author:

Shen Tianhao1,Zhang Fengxia12,Yang Shiliang1,Wang Hua13,Hu Jianhang1

Affiliation:

1. Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China

2. Kunming Institute of Metallurgy, College of Metallurgy and Mining, Kunming 650033, China

3. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

Abstract

WCO-Biodiesel can be used as a fuel instead of fossil energy for the copper smelting industry will not only save resources but also protect the environment. The pyrolysis of WCO-Biodiesel in the melting pool is influenced to some extent by the copper slag (CS) generated during the copper smelting process. In this study, the effects of CS on the kinetic triplet, thermodynamics, product characteristics and reaction mechanism of WCO-Biodiesel are comprehensively investigated via a thermogravimetric analyzer and pyrolysis experimental system. Firstly, the apparent activation energy (Eα) is calculated using STR, and Eα decreased at different α under the influence of CS. Then, the trend of the WCO-Biodiesel pyrolysis mechanism with α is determined by the master plots method based on 18 commonly used models similar to the Pn and D1 models. The analysis of WCO-Biodiesel pyrolysis gas products shows that more flammable gases containing H are formed under the influence of CS. The analysis of the liquid products shows that more PAHs and more small molecule products are generated under the influence of CS. Two coke products are produced at high temperatures, which differ significantly in microscopic morphology, spherical carbon particle size and chemical structure. Finally, the mechanism of pyrolysis of the main components in WCO-Biodiesel in the high-temperature environment of melt pool melting is explored.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3