A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations

Author:

Isaac Nithin1,Saha Akshay K.1ORCID

Affiliation:

1. Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

Increasing sales of conventional fuel-based vehicles are leading to an increase in carbon emissions, which are dangerous to the environment. To reduce these, conventional fuel-based vehicles must be replaced with alternative fuel vehicles such as hydrogen-fueled. Hydrogen can fuel vehicles with near-zero greenhouse gas emissions. However, to increase the penetration of such alternative fuel vehicles, there needs to be adequate infrastructure, specifically, refueling infrastructure, in place. This paper presents a comprehensive review of the different optimization strategies and methods used in the location of hydrogen refueling stations. The findings of the review in this paper show that there are various methods which can be used to optimally locate refueling stations, the most popular being the p-median and flow-capture location models. It is also evident from the review that there are limited studies that consider location strategies of hydrogen refueling stations within a rural setting; most studies are focused on urban locations due to the high probability of penetration into these areas. Furthermore, it is apparent that there is still a need to incorporate factors such as the safety elements of hydrogen refueling station construction, and for risk assessments to provide more robust, realistic solutions for the optimal location of hydrogen refueling stations. Hence, the methods reviewed in this paper can be used and expanded upon to create useful and accurate models for a hydrogen refueling network. Furthermore, this paper will assist future studies to achieve an understanding of the extant studies on hydrogen refueling station and their optimal location strategies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference51 articles.

1. IEA (2020). CO2 Emissions from Fuel Combustion: Overview, IEA.

2. A literature review on hydrogen refuelling stations and infrastructure;Apostolou;Current status and future prospects. Renew. Sustain. Energy Rev.,2019

3. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook;Thompson;J. Power Sources,2018

4. Location Optimization of Hydrogen Refueling Stations in Hydrogen Expressway Based on Hydrogen Supply Chain Cost;Wang;Front. Artif. Intell. Appl.,2021

5. Optimizing Number and Locations of Alternative-Fuel Stations Using a Multi-Criteria Approach;Asghari;Eng. Technol. Appl. Sci. Res.,2019

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3