Local Interpretable Explanations of Energy System Designs

Author:

Hülsmann Jonas1ORCID,Barbosa Julia1ORCID,Steinke Florian1ORCID

Affiliation:

1. Energy Information Networks & Systems, Technical University Darmstadt, 64283 Darmstadt, Germany

Abstract

Optimization-based design tools for energy systems often require a large set of parameter assumptions, e.g., about technology efficiencies and costs or the temporal availability of variable renewable energies. Understanding the influence of all these parameters on the computed energy system design via direct sensitivity analysis is not easy for human decision-makers, since they may become overloaded by the multitude of possible results. We thus propose transferring an approach from explaining complex neural networks, so-called locally interpretable model-agnostic explanations (LIME), to this related problem. Specifically, we use variations of a small number of interpretable, high-level parameter features and sparse linear regression to obtain the most important local explanations for a selected design quantity. For a small bottom-up optimization model of a grid-connected building with photovoltaics, we derive intuitive explanations for the optimal battery capacity in terms of different cloud characteristics. For a larger application, namely a national model of the German energy transition until 2050, we relate path dependencies of the electrification of the heating and transport sector to the correlation measures between renewables and thermal loads. Compared to direct sensitivity analysis, the derived explanations are more compact and robust and thus more interpretable for human decision-makers.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Loulou, R., Remme, U., Kanudia, A., Lehtila, A., and Goldstein, G. (2005). Documentation for the Times Model Part II, Energy Technology Systems Analysis Programme; International Energy Agency.

2. OSeMOSYS: The open source energy modeling system: An introduction to its ethos, structure and development;Howells;Energy Policy,2011

3. TemoaProject (2022, March 04). Open Energy Outlook for the United States. Available online: https://github.com/TemoaProject/oeo.

4. Calliope-Project (2022, March 04). Model of the UK Power System Built with Calliope. Available online: https://github.com/calliope-project/uk-calliope.

5. Barbosa, J., Ripp, C., and Steinke, F. (2021). Accessible Modeling of the German Energy Transition: An Open, Compact, and Validated Model. Energies, 14.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3