Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture

Author:

Igolnikov Alexander12ORCID,Skripov Pavel2

Affiliation:

1. Department of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia

2. Institute of Thermal Physics, Ural Branch of RAS, 620016 Ekaterinburg, Russia

Abstract

This article is devoted to the study of the phenomenon of superheating of partially miscible mixtures having a lower critical solution temperature and the thermal effect accompanying the relaxation of an unstable mixture, within the framework of the problem of high-density heat flux removal. The study was carried out by using the method of the controlled pulse heating of a platinum wire probe. The characteristic heating time was from 0.2 to 180 ms. The superheating degree of the mixture relative to the diffusion spinodal exceeded 100 K. The heat flux density from the heater surface reached 13.7 MW/m2. The object of research was an aqueous solution of polypropylene glycol-425 (PPG-425). The obtained results clearly indicate that such mixtures can be used as coolants in processes where the possibility of powerful local heat release cannot be excluded. They also form the basis for expanding the phase diagram by involving in the study not-fully-stable and unstable states of the mixture.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3