Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research

Author:

Chen Xia1,Zhang Mingxuan1,Wu Yuting1,Ma Chongfang1

Affiliation:

1. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, and Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

Abstract

Molten salt is an excellent medium for heat transfer and storage. The unique microstructure of carbon nanomaterials leads to good mechanical stability, low density, high thermal conductivity, and high strength, etc. The addition of carbon nanomaterials to molten salt to form molten salt nanofluid can remarkably enhance the specific heat capacity and thermal conductivity of molten salt and reduce the molten salt viscosity, which is of great importance to increase the heat storage density and reduce the heat storage cost. Nevertheless, some challenges remain in the study of such nanofluids. The main challenge is the dispersion stability of carbon nanomaterials. Therefore, to improve research on carbon nanofluids, this paper summarizes the progress of carbon-based molten salt nanofluid research worldwide including the preparation methods of molten salt nanofluids, the improvement of heat transfer performance, and the improvement of heat storage performance. The effects of carbon nanoparticle concentration, size, and type on the heat transfer and storage performance of molten salt are derived, and the effects of nanoparticle shape on the heat transfer performance of molten salt are analyzed while more promising preparation methods for carbon-based molten salt nanofluids are proposed. In addition, the future problems that need to be solved for high-temperature molten salt-based carbon nanofluids are briefly discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3