Recent Advances in Graphene-Based Mesoporous Nanosheets for Supercapacitors

Author:

Bo Wenbei1,Zhang Hongtao1,Yin Guocheng2,Zhang Liangzhu3,Qin Jieqiong1ORCID

Affiliation:

1. College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou 450002, China

2. School of Chemistry and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, China

3. School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Among typical energy storage devices, supercapacitors play a predominant role in industry and our life owing to their rapid charge/discharge rate, superior lifespan, high power density, low cost, and outstanding safety. However, their low energy density has severely hindered their further development. For active electrode materials, graphene-based mesoporous nanosheets (GMNs) can combine the advantages from graphene and mesoporous materials, which can be applied to significantly enhance the energy density of supercapacitors. Here, we review the recent advances in GMNs for supercapacitors, focusing on in-plane mesoporous graphene and sandwich-like graphene-based heterostructures. Firstly, the synthesis of in-plane mesoporous graphene with ordered and disordered mesopores for supercapacitors is introduced. Secondly, sandwich-like graphene-based heterostructures are classified into mesoporous carbon/graphene, mesoporous heteroatom-doped carbon/graphene, mesoporous conducting polymer/graphene, and mesoporous metal oxide/graphene, and their applications in supercapacitors are discussed in detail. Finally, the challenges and opportunities of GMNs for high-performance supercapacitors are proposed.

Funder

National Natural Science Foundation of China

Top-Notch Talent Program of Henan Agricultural University

State Key Laboratory of Catalysis in DICP

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3