An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol under Periodic Traffic

Author:

Wang Yipeng,Yang Wei,Han RuisongORCID,Xu LinsenORCID,Zhao Haojiang

Abstract

As the reference communication standard of wireless sensor networks (WSNs), the IEEE 802.15.4 standard has been adopted in various WSN-based applications. In many of these applications, one of the most common traffic pattern types is a periodic traffic patterns, however, the majority of existing analytical models target either saturated or unsaturated network traffic patterns. Furthermore, few of them can be directly extended to the periodic traffic scenario, since periodic traffic brings unstable load status to sensor nodes. To better characterize the WSNs with periodic traffic, we propose an accurate and scalable analytical framework for the IEEE 802.15.4 MAC protocol. By formulating the relationship between clear channel assessment (CCA) and its successful probability from the perspective of channel state and node state, single node’s behavior and whole network’s performance under different network scales and traffic loads can be derived. Extensive simulations are conducted to validate the proposed framework in terms of both local statistics and overall statistics, and the results show that the model can represent the actual behavior and the real performance of both single node and whole network. Besides, as the simplified version of double CCAs mode (DS mode), single CCA mode (SS mode), is also analyzed with simple modifications on the proposed analytical framework. Combining the analytical framework with simulation results, the applicable network scenarios of two modes are also demonstrated respectively. Finally, an approximate distribution of one data packet’s backoff duration is proposed. With this approximate distribution, a conservative estimation of data packet’s average transmission latency in networks with given configurations can be easily carried out.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3