Research Progress of Superhydrophobic Materials in the Field of Anti-/De-Icing and Their Preparation: A Review

Author:

Cong Qian1,Qin Xiuzhang1,Chen Tingkun1ORCID,Jin Jingfu1,Liu Chaozong2ORCID,Wang Mingqing3ORCID

Affiliation:

1. Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

2. Department of Ortho and MSK Science, University College London, London HA7 4LP, UK

3. Institute for Materials Discovery, University College London, London WC1E 7JE, UK

Abstract

Accumulated ice has brought much damage to engineering and people’s lives. The accumulation of ice can affect the flight safety of aircraft and lead to the failure of cables and power generation blades; it can even cause damage to human life. Traditional anti-icing and de-icing strategies have many disadvantages such as high energy consumption, low efficiency, or pollution of the environment. Therefore, inspired by animal communities, researchers have developed new passive anti-icing materials such as superhydrophobic material. In this paper, the solid surface wetting phenomenon and superhydrophobic anti-icing and de-icing mechanism were introduced. The methods of fabrication of superhydrophobic surfaces were summarized. The research progress of wear-resistant superhydrophobic coatings, self-healing/self-repairing superhydrophobic coatings, photothermal superhydrophobic coatings, and electrothermal superhydrophobic coatings in the field of anti-icing and de-icing was reviewed. The current problems and challenges were analyzed, and the development trend of superhydrophobic materials was also prospected in the field of anti-icing and de-icing. The practicality of current superhydrophobic materials should continue to be explored in depth.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province, China

Education Department of Jilin Province, China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3