The Effect of the Forging Process on the Microstructure and Mechanical Properties of a New Low-Cost Ti-5Al-1.5Mo-1.8Fe Alloy

Author:

Hu Jinbao12ORCID,Mu Yiqiang12,Xu Qinsi12,Yao Nan1,Li Shujun2,Lei Xiaofei2

Affiliation:

1. College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China

2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

This paper presents results on the microstructure and mechanical properties of a new low-cost titanium alloy Ti-5Al-1.5Mo-1.8Fe after different forging processes. The β phase transformation temperature of this alloy was 950 °C. In this study, the forging temperatures were designed at 920 °C and 980 °C, and the deformation degree ranged from 20% to 60%, with an interval of 20%. This study investigated the impact of the equiaxed α phase and shape of the lamellar microstructure on the tensile characteristics and fracture toughness of an alloy. The research employed a microstructure analysis and static tensile testing to evaluate the effect of forging temperatures and degree of deformation on the microstructure features. The findings revealed that forging temperatures could modify the microstructure characteristics, and the degree of deformation also affected this microstructure. This study demonstrates that a bimodal structure with an equiaxed α phase can be utilized to balance high strength and high ductility, resulting in better overall mechanical properties.

Funder

Opening Project of National Key Laboratory of Shock Wave and Detonation Physics

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3