Advanced Analytical Methods of the Analysis of Friction Stir Welding Process (FSW) of Aluminum Sheets Used in the Automotive Industry

Author:

Chyła Krzysztof1ORCID,Gaska Krzysztof1ORCID,Gronba-Chyła Anna2ORCID,Generowicz Agnieszka3ORCID,Grąz Katarzyna2,Ciuła Józef4ORCID

Affiliation:

1. Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

2. Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, ul. Konstantynów 1 H, 20-708 Lublin, Poland

3. Department of Environmental Technologies, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

4. Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Zamenhofa 1A, 33-300 Nowy Sącz, Poland

Abstract

The paper provides general information on selected methods of joining aluminum sheets. The main focus is on the strength of the friction stir welding connection and the energy consumption of the process. The practical part of the study used aluminum alloy 2024-T3, the most commonly used alloy in the automotive industry. The study consisted of the FSW welding of two pieces of overlapping sheet metal, using different process parameters. The thickness of the sheet used was 1 mm. After the welding was completed, the test specimens were broken on a testing machine. During the tests, the appropriate process parameters were selected at which the weld showed the highest strength. The effect of implementing the FSW process should be to increase the efficiency of sheet-metal joining. It should also result in a reduction in the energy intensity of the process, which will translate into the lower production cost of the final product. Strength tests were carried out on eighteen samples of joined sheets. The best results were obtained at a feed rate of 100 (mm/min) and a rotational speed of 900 (rpm). It can also be seen that friction welding is an efficient and low-emission way of joining metals. Through the analysis, it can be concluded that in order to perform one meter of satisfactory welding, CO2 emissions will be approximately 310 g. These are calculations based on data published by the National Balancing and Emissions Management Centre from 2019. Analyzing the 2019 data from the Society of Automobile Manufacturers, it is safe to say that the potential for implementing the FSW method in the automotive industry is huge.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3