Fabrication of Multi-Walled Structure through Parametric Study of Bead Geometries of GMAW-Based WAAM Process of SS309L

Author:

Vora Jay1ORCID,Pandey Rudram1ORCID,Dodiya Pratik1,Patel Vivek1ORCID,Khanna Sakshum2ORCID,Vaghasia Vatsal1,Chaudhari Rakesh1ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382007, India

2. Journal of Visualized Experiments, Delhi 110016, India

Abstract

In the present study, an attempt is made to investigate and optimize the bead geometries of bead width (BW) and bead height (BH) of SS-309L using an SS316L substrate by employing a gas metal arc welding (GMAW)-based wire-arc additive manufacturing (WAAM) process. The Box–Behnken design approach was used to conduct the trials of single-layer depositions with input variables of travel speed (TS), voltage (V), and gas mixture ratio (GMR). The developed multi-variable regression models were tested for feasibility using ANOVA and residual plots. The data obtained indicated that V had the most significant impact on BW, followed by TS and GMR. For BH, TS had the most significant impact, followed by GMR and V. The results of single-response optimization using a passing vehicle search (PVS) algorithm showed a maximum BH of 9.48 mm and a minimum BW of 5.90 mm. To tackle the contradictory situation, a multi-objective PVS algorithm was employed, which produced non-dominated solutions. A multi-layered structure was successfully fabricated at the optimal parametric settings of TS at 20 mm/s, of voltage at 22 V, and of GMR at 3. For multi-layer structures, fusion among the layers was observed to be good, and they were found to be free from the disbonding of layers. This revealed the suitability of the PVS algorithm for generating suitable optimal WAAM variables. We consider the current work highly beneficial for users fabricating multi-layer structures.

Funder

Institution of Engineers

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3