Phase Structure, Bond Features, and Microwave Dielectric Characteristics of Ruddlesden–Popper Type Sr2TiO4 Ceramics

Author:

Yang Jun12,Pang Jinbiao2,Luo Xiaofang3,Ao Laiyuan2,Xie Qiang2,Wang Xing2,Yang Hongyu4ORCID,Tang Xianzhong1

Affiliation:

1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

2. China Zhenhua Group Yunke Electronic Co., Ltd., Guiyang 550018, China

3. China Zhenhua Group Xinyun Electronic Co., Ltd., Guiyang 550018, China

4. Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China

Abstract

This work studied the phase constitution, bond characteristics, and microwave dielectric performances of Sr2TiO4 ceramics. Based on XRD and Rietveld refinement analysis, pure tetragonal Ruddlesden–Popper type Sr2TiO4 ceramic is synthesized at 1425~1525 °C. Meanwhile, the microstructure is dense and without porosity, indicating its high sinterability and densification. Great microwave dielectric performances can be obtained, namely an εr value of 39.41, and a Q × f value of 93,120 GHz, when sintered at 1475 °C. Under ideal sintering conditions, the extrinsic factors are minimized and can be ignored. Thus, the intrinsic factors are considered crucial in determining microwave dielectric performances. Based on the P–V–L complex chemical bond theory calculation, the largest bond ionicity, and proportions to the bond susceptibility from Sr–O bonds suggest that Sr–O bonds mainly determine the dielectric polarizability. However, the Ti–O bonds show lattice energy about three times larger than Sr–O bonds, emphasizing that the structural stability of Sr2TiO4 ceramics is dominated by Ti–O bonds, and the Ti–O bonds are vital in determining the intrinsic dielectric loss. The thermal expansion coefficient value of the Sr2TiO4 structure is also mainly decided by Ti–O bonds.

Funder

open research fund of Songshan Lake Materials Laboratory

2023 Guizhou Science and Technology Support Plan

Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects

Natural Science Basic Research Program of Shaanxi

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3