Caustic Frequency in 2D Stochastic Flows Modeling Turbulence

Author:

Piterbarg Leonid I.

Abstract

Stochastic flows mimicking 2D turbulence in compressible media are considered. Particles driven by such flows can collide and we study the collision (caustic) frequency. Caustics occur when the Jacobian of a flow vanishes. First, a system of nonlinear stochastic differential equations involving the Jacobian is derived and reduced to a smaller number of unknowns. Then, for special cases of the stochastic forcing, upper and lower bounds are found for the mean number of caustics as a function of Stokes number. The bounds yield an exact asymptotic for small Stokes numbers. The efficiency of the bounds is verified numerically. As auxiliary results we give rigorous proofs of the well known expressions for the caustic frequency and Lyapunov exponent in the one-dimensional model. Our findings may also be used for estimating the mean time when a 2D Riemann type partial differential equation with a stochastic forcing loses uniqueness of solutions.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference14 articles.

1. Stochastic Flows and Stochastic Differential Equations;Kunita,1990

2. The Top Lyapunov Exponent for a Stochastic Flow Modeling the Upper Ocean Turbulence

3. Statistical Fluid Mechanics: Mechanics of Turbulence;Monin,1975

4. Statistical models for spatial patterns of inertial particles in turbulence;Gustavsson;arXiv,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3